Ground-Level NO2 Concentrations over China Inferred from the Satellite OMI and CMAQ Model Simulations

نویسندگان

  • Jianbin Gu
  • Liangfu Chen
  • Chao Yu
  • Shenshen Li
  • Jinhua Tao
  • Meng Fan
  • Xiaozhen Xiong
  • Zifeng Wang
  • Huazhe Shang
  • Lin Su
چکیده

In the past decades, continuous efforts have been made at a national level to reduce Nitrogen Dioxide (NO2) emissions in the atmosphere over China. However, public concern and related research mostly deal with tropospheric NO2 columns rather than ground-level NO2 concentrations, but actually ground-level NO2 concentrations are more closely related to anthropogenic emissions, and directly affect human health. This paper presents one method to derive the ground-level NO2 concentrations using the total column of NO2 observed from the Ozone Monitoring Instrument (OMI) and the simulations from the Community Multi-scale Air Quality (CMAQ) model in China. One year’s worth of data from 2014 was processed and the results compared with ground-based NO2 measurements from a network of China’s National Environmental Monitoring Centre (CNEMC). The standard deviation between ground-level NO2 concentrations over China, the CMAQ simulated measurements and in-situ measurements by CNEMC for January was 21.79 μg/m3, which was improved to a standard deviation of 18.90 μg/m3 between our method and CNEMC data. Correlation coefficients between the CMAQ simulation and in-situ measurements were 0.75 for January and July, and they were improved to 0.80 and 0.78, respectively. Our results revealed that the method presented in this paper can be used to better measure ground-level NO2 concentrations over China.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison study between CMAQ-simulated and OMI-retrieved NO2 columns over East Asia for evaluation of NOx emission fluxes of INTEX-B, CAPSS, and REAS inventories

Comparison between the CMAQ (Community Multi-scale Air Quality Model)-calculated and OMI (Ozone Monitoring Instrument)-retrieved tropospheric NO2 columns was carried out for 2006 over East Asia (100–150 E; 20– 50 N) to evaluate the bottom-up NOx emission fluxes of INTEX-B, CAPSS, and REAS v1.11 inventories. The three emission inventories were applied to the CMAQ model simulations for the countr...

متن کامل

Development of a custom OMI NO2 data product for evaluating biases in a regional chemistry transport model

In this paper, we present the custom Hong Kong NO2 retrieval (HKOMI) for the Ozone Monitoring Instrument (OMI) on board the Aura satellite which was used to evaluate a high-resolution chemistry transport model (CTM) (3 km× 3 km spatial resolution). The atmospheric chemistry transport was modelled in the Pearl River Delta (PRD) region in southern China by the Models-3 Community Multiscale Air Qu...

متن کامل

Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument

[1] We present an approach to infer ground-level nitrogen dioxide (NO2) concentrations by applying local scaling factors from a global three-dimensional model (GEOS-Chem) to tropospheric NO2 columns retrieved from the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. Seasonal mean OMI surface NO2 derived from the standard tropospheric NO2 data product (Version 1.0.5, Collection 3) v...

متن کامل

OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution

Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a finescale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Spaceborne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite an...

متن کامل

Novel application of satellite and in-situ measurements to map surface-level NO2 in the Great Lakes region

Ozone Monitoring Instrument (OMI) tropospheric NO2 vertical column density data were used in conjunction with in-situ NO2 concentrations collected by permanently installed monitoring stations to infer 24 h surface-level NO2 concentrations at 0.1 (∼11 km) resolution. The region examined included rural and suburban areas, and the highly industrialised area of Windsor, Ontario, which is situated d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017